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ABSTRACT 

We present a method for estimating the position and orientation of a ground vehicle in an 
environment with landmarks. From the geometric relationships, we derive a set of linear 
equations with a quadratic constraint, which forms the basis for our optimisation problem. We 
also extend the problem to associating two sets of measurements taken at two successive locations 
to improve the navigation accuracy. This method is efficient and the performance is robust 
against large measurement errors. 

20090710280 
RELEASE LIMITATION 

Approved for public release 

4p fv^-Jo-osiit? 



Published by 

Weapons Systems Division 
DSTO Defence Science and Technology Organisation 
PO Box 1500 
Edinburgh South Australia 5111   Australia 

Telephone: (08) 8259 5555 
Fax: (08)8259 6567 

© Commonwealth of Australia 2009 
AR-014-415 
March 2009 

APPROVED FOR PUBLIC RELEASE 



Landmark-based Navigation of an Unmanned 
Ground Vehicle (UGV) 

Executive Summary 

We present an efficient method for localising an unmanned ground vehicle (UGV) in a two 
dimensional environment with landmarks. We assume that the vehicle can identify these 
landmarks and measure their bearings. We derive a set of linear equations that relate the 
UGV's position and orientation to the measured bearings, assuming perfect 
measurements. Having noise in the measurements, we establish an estimator, based on 
minimising a constrained quadratic cost function. 

Landmark-based navigation is useful where GPS is not adequate because of signal 
blockage and interference. Possible defence applications include robots performing the 
following tasks: indoor bomb search, landmine location, autonomous surveillance of 
military bases or nuclear sites, and logistics in urban battle zones. 

The proposed algorithm is efficient and the performance is consistent given that the UGV 
is inside the boundary formed by the landmarks. The estimation accuracy is shown to 
improve as the number of landmarks increases. Given that the number of landmarks is 
limited, we extend the initial formulation and propose another method that utilises two 
sets of measurements from two locations and estimates the current position and azimuth 
with significantly improved accuracy. The performance is robust against large 
measurement errors, and can be coupled with an inertial navigation system to enable 
higher rate navigation with greater accuracy, especially in outdoor settings. 
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1. Introduction 

This report presents the problem of estimating the position and azimuth of a mobile robot or 
unmanned ground vehicle (UGV), by measuring bearing angles to landmarks. We derive a set 
of linear homogenous equations that relate the robot position and orientation to the measured 
bearings. Given that bearing measurements are noisy and redundant, we establish an 
estimator based on minimising a constrained quadratic cost function. 

Localisation is of interest for many industrial (e.g., robots) and defence applications (e.g., 
UAVs and UGVs). In open outdoor environments, differential GPS systems can provide 
precise position information. However, there are scenarios where GPS is not adequate such as 
indoor, underwater, extraterrestrial or urban environments, because of signal blockage and 
multipath interference. Also, for stand-alone systems, the position accuracy may not be 
sufficient [Borenstein et al, 1997]. In defence applications, the GPS receiver on the ground level 
is likely to be subject to jamming or spoofing from an adversary. A simple alternative would 
be odometry or inertial navigation system (INS). However, both of which are subject to build- 
up of error with time, and often require an external aid. 

Landmark based localisation is attractive in a controlled environment where the landmarks 
can be precisely located. Possible applications include robots performing one or more of the 
following tasks: indoor bomb search, landmine location, autonomous surveillance of military 
bases or nuclear sites, and logistics in urban battle zones. 

We assume that the robot is equipped with an omni-directional camera (e.g., catadioptric 
sensor, ringcam, panospheric camera) [Daniilidis, K, web source]. 

Figure 1:   Examples of omni-directional cameras [Daniilidis, K, web source] 

The report is organised as follows. In Section 2, we present the formulation of the basic 
algorithm and optimisation, and performance assessment. In Section 3, we extend the problem 
by taking two sets of measurements at two successive locations and combining them to 
improve the localisation accuracy. Section 4 summarises the findings and concludes the 
report. 
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2. Formulation of Basic Algorithm 

2.1 Notations 

X  : vector X in frame A - (note that without A, default frame is REF which is a fixed 
reference frame). 

X," 
L, 

YLi 

: ith landmark position vector 

B, = 
X„ 

= B^ : robot position at ith time instance. 

R^ : 2x2 rotation matrix for coordinate transformation from frame A to frame B. 

Rotation Matrices (and shorthand notations): 

sind,~\    [ c,     s, 
REF to Robot at Position 1 R*' = 

Rf = 

cos#, 

-sin#,    cos#, 

sin 02 cos6>2 

62    cos 62 

-5,     C, 

-sin I 

82  - 

cos(A6>)    sin(A<9)' 

-sin(A(9)   cos(A6>) 

-s2    c. 

C       5 

REF to Robot at Position 2 

Robot 2 to Robot 1 
— s    c 

ive when measured counter-clockwise. 

.; expressed in body frame 

Note all the angular terms are positive when measured counter-cl< 

Given a robot positioned at Bl, consider an ilh landmark position L; 
(see Figure 2), 

cos#,      sin#, 

— sin 6X    cos #, 
Lf' = 

Z„ cos/?,/ 

Z,„sin/?„ -R/? (L, ~Bi)-R«L/-R«'Bi - 
X, 
Yu. 

+ T, ,fli 

where T,    = 
Xr 

-R«'B,- 

(1) 

(2) 



2.2 Derivation of Linear Equations 
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LANDMARK 
LANDMARK 

2 

L1=(Xi  . Y.   ) • 
L2= •< • 

Y 

L,-   / 
! 

LANDMARK 
3 

•      1 

• 

/'      >vP ' 

—-L"*\ \ 

B1=(X,     - 
BODY 

FRAME 

Q^ is negative in this case 

FRAME 

Figure 2: Illustration of a mobile robot that detects three known landmarks along the directions 
(3U /3l2 /3n . The problem is to find the position Bl and orientation 6X of the robot with 

respect to REF frame. 

row by bottom row gives Dividing the top 

cos Pu      cos 6X X u + sin #, Yu + XT 

sin Ph     - sin 0, Xu + cos 0, Yu + YT 

This can be rewritten in vector form as 

[sinPUXLI -cospuYu,   sinPUYLI+cospuXLI,   sin/?,,,   -cos/?,,]- 

Let 
All, = sin PuXh-cos PhYu 

Al2,=smPJh+cosft,Xu. 

In the absence of measurement errors, populati 
homogenous equations which can be expressed 

cos#, 

sin#, 

XT 

= 0 (3) 

!, populating (3) for all N landmarks will prod 
expressed as a vector equation 

uce N 
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/ill,       ,412, 

AlU      All, 

M 

AU„ 

M 

sin/?,, 

sin /?,., 

M 

A\2N    sin/?. 

COS /?, | cos#. 

COS/?,2 sin#, 

M .A y 

cos/?1JV .   Fr   . 

= 0, (4) 

We express the above equation as Ax = b where A is the measurement matrix, x contains the 
three unknowns we want to estimate (ie,.   6X,Xr,YT),   and   b = 0Wx,. If the bearing 

measurements and landmark positions are error free, then the exact solution to (4) can be 
found with N=3, as long as the landmarks and the robot do not lie on a circle or a straight line 
[Shimshoni, I., 2002]. If the measurements are noisy and more landmarks are available, then 
we need to establish a cost function and minimise it to solve the localisation problem. 

2.3 Optimal Solution 

Note that the matrix A contains the bearing measurements. If the measurements are noisy, 
then b will no longer be equal to 0nx,. The objective is to minimise the cost function defined as 

(Ax) AX which would typically be non-zero. 

We want to minimise 
x7Px 

subject to 
xrQx-l = 0. 

(5) 

where  P = A A, and Q = 

1 0 0 0" 

0 1 0 0 

0 0 0 0 

0 0 0 0 

The constraint x7 Qx -1 = 0 expresses the known property, cos2 0] + sin2 Gx = 1. 

Now define the Lagrangian of (5) as 

L{x,X) = x7 Px - A(xTQx -1) (6) 

The minimiser of Equation 6 must satisfy the first optimality condition (7) and the constraint 
(8) shown below 

8L 

dx 
8L 

= 2(P - AQ)x = 0 

= x7Qx-l = 0. 

(7) 

(8) 
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Solving (7) and (8) becomes a generalised eigen-decomposition (GED) problem. The optimal 
Lagrange multiplier X is the smallest positive eigenvalue of the matrix pair (P,Q)and x'is 
the corresponding eigenvector, normalised according to (8). 

2.4 Implementation Issues 

This formulation bears resemblance to the method proposed by [Shimshoni, 2002]. Shimshoni 
applies a number of pre-conditioning processes to the linear equations to arrive at the same 
equation as in (4). The main difference is that the constraints used by Shimshoni is xTx = 1 
instead of x Qx -1=0, and therefore SVD is employed to solve the localisation problem. 

It should be noted that for numerical stability, it is often necessary to translate and scale the 
original geometry so that the entries of A are numerically comparable in size. 

First, we shift the origin of the REF frame to a mean of all the landmark positions, and then 

replace L,with L, where L, =L, zl^i   (N is the number of landmarks). We then 

compute the norms LI   (ie, distance of each landmark from the new origin), find the 

maximum norm (named SF), and divide L,by SF. This process limits the position terms 
within ± 1, hence making them comparable to the magnitude of sine and cosine terms in (3). 

When the optimal solution is found, we need to convert T,"' (= x*(3 :4)) to B, (ie., robot 
position in REF frame) via following transformation. 

B^-SF^RfjTr^tL, (9) 

When the SVD or GED problem is solved, the solution is a unit eigenvector whose magnitude 
and sign need to be adjusted. First we have to satisfy x(l)2 + x(2)2 = 1, by dividing x* by 

norm(x'(\ : 2)). To resolve the sign issue, we perform the following routine. 

Algorithm ******** 

1. compute the robot azimuth (0]) and position (B,) from x*. 

2. given L,,B, and 6X, the expected bearing /?,, is computed. 

3. For all landmarks, compare the computed bearings with the measured bearings. If the 
majority of the "computed-measured" bearing pairs are well aligned, then accept the 
solution. If the majority of them are off by about 180°, then change the sign of x' and 
recompute (9). 
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2.5 Performance Comparisons with Shimshoni's Method 

We reproduced the work of Shimshoni to use as a benchmark. Here we show that our GED- 
based optimisation performs consistently better than the benchmark, and exclude SVD 
method in the performance comparison in Section 3.5. 

We tested both methods, using two sets of 4 and 8 landmarks located at 

L={(0, 0), (40, 0), (0,40), (40,40)} and 
L={(0, 0), (40, 0), (0,40), (40,40), (20, 0), (0, 20), (40, 20), (20,40)}. 

We conducted 1000 Monte-Carlo simulations to get the statistics for the estimation errors. 

Note the robot azimuth is set to be uniformly distributed between -180° and 180°. The 
bearing error is assumed to be Gaussian with standard deviations of 3° by default. Robot 
position is fixed at (4,10). 

2.5.1 Effects of Number of Landmarks 

Using 4 landmarks, bearing std=3° 

As shown in Figure 3, both methods generate error distribution Gaussian-like histograms of 
zero mean. 

Jku. 4 0 2 4 a 

Figure 3: Histogram ofx, y position and azimuth errors (from top to bottom) using SVD (left) and 
GED (right) optimisations, with bearing error standard deviation of 3°. Four landmarks are 
used. 

The comparisons of the estimation errors between the SVD and GED methods are given as 
RMS (root mean square) values in Table 1. The GED method produces smaller errors but the 
difference is not significant. 
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Table 1:     Estimation errors (rms) obtained using both methods with four landmarks. The smaller 
numbers are shaded with pale yellow. 

RMS error SVD GED 
X position Error 0.8452 0.8444 
Y position Error 1.5839 1.5780 

Azimuth Error (°) 1.6239 1.6218 

Using 8 landmarks, bearing std=3° 

When the bearing measurements are increased to 8, the error distribution curves become more 
peaked (see Figure 4). Again, the performance difference is very small. 

5 5        -2        -15 05        D        05        1 13        2        25 iirt •OS 0 05 IS        2        15 

A 
ttiMa arror (dag) 

Figure 4: Histogram ofx, y positions and azimuth errors (from top to bottom) using SVD (left) and 
GED (right) optimisations, with bearing error standard deviation of 3°. 8 landmarks are 
used. 

Table 2:     Estimation errors (rms) when eight landmarks are used 

RMS error SVD GED 
X position Error 0.5832 0.5822 
Y position Error 0.9037 0.8969 

Azimuth Error (°) 1.3764 1.3744 

It is clear that the estimation accuracy of both methods improve when more measurements are 
available. 
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2.5.2 Effect of Measurement Noise 

Here, we set N=4, and vary the bearing measurement error (l<x) from 1° to 10°. We introduce 

the Cramer-Rao Lower Bound (CRLB) which is the smallest possible error bound that any 
unbiased method could achieve for the same N, cr(/3) and robot-landmark geometry. We 

present the error curves for the GED/SVD along with the CRLB (see Figure 5) to show how 
close they are to the CRLB for various <T(J3) values. In Figure 5, the gaps among the three 

curves are small for cr{P) up to 5°. As the bearing error becomes larger the gaps with the 

CRLB become wider. The GED method appears to outperform the SVD method even though 
the differences remain small. 

y position on 

.- SVD method 

OED mothod // 
• CRLB /'      ' 

/ 
/ 

/ 

azimuth error (dog) 

bearing err (dog) bearing  err (dog) booring orr (dog) 

Figure 5: Plots of position and azimuth errors versus bearing errors (la). The red and blue curves 

represent the rms errors from the SVD and GED methods respectively. The green curves 
represent tlie Cramer-Rao Lower Bounds. 

Figure 6 shows the estimation error differences between the SVD and GED methods. The 
values are mostly positive indicating that the GED method outperforms consistently. The 
error separation widens as the cr(/?) increases, indicating the GED method is more resilient 

against measurement noise. 
y position error gap 

0 3 
x position error gap 

0 25 
• 

0 2 

0 15 
• 

0.1 

0 06 

0 

v" 
E SVD err GED «<r ]                      / 

0 2 

0 15 / 
/ 

0 1 

/ 

0 05 

--" 
^ 

/ 

/ 

bearing err (dog) bearing err(deg) 

azimuth error gap (deg) 

• 

 -V 
bearing err (deg) 

Figure 6: Estimation error differences between the SVD and GED estimation methods as functions of 
bearing error. A positive value means the error from the SVD method is larger than the 
error from the GED method. 
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2.5.3 Effect of Landmarks and Robot Geometry 

The findings in Sections 2.5.1 and 2.5.2 are based on the fixed robot position of (4,10). If the 
estimation accuracy varies drastically as the robot position varies, then the validity of the 
previous results may not hold. 

In this subsection, we place the robot at 13 different locations and examine how the geometry 
affects the performance. In Figure 7, four landmarks are placed on the corners of a square (in 
green), and the robot positions are varied from the middle of the square to well outside the 

square. The combined position errors (yjx_err2 + y_err2) and azimuth errors achieved 

from those positions are presented in Table 3. The second row shows the coordinates of the 13 
locations, and the l<x estimation errors are in the 3rd and 4th rows. 

It is observed that the errors are small when the robot is within the square region (yellow 
shade in Table 3). Moving away from the centre does not cause noticeable increase in the 
estimation errors as long as the robot is kept within the perimeter. As the robot reaches the 
perimeter, the error increase becomes somewhat more evident (grey shade). Once outside the 
perimeter, then the errors become large and they increase rapidly as the robot moves further 
away from the landmarks. The optimisation seems to work best if bearings are widely 
scattered. As the robot moves further away from the square, the bearings aggregate in one 
direction. This kind of geometric arrangement (eg., position 13) seems to flatten the cost curve, 
making the minimum prone to the measurement noise. Of course, this spread can be reduced 
if the measurement noise is reduced making the cost curve smoother. 

Another interesting observation is the large jump in the error at positions 8 and 9. This is the 
case when the landmarks and robot form a circle accidentally. In this case, an infinite number 
of solutions exist. The robot can be anywhere on the circle (shown in cyan) and receive the 
same bearing measurements [Betke, M., and Gurvits, L., 1997]. 

In summary, localisation is most accurate when the robot operates within the boundary 
formed by the landmarks. 
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D 
(0,0) 

• Landmark 
Positions 

UGV 
Positions 

Figure 7:   With four landmarks forming a square, 13 different robot positions are selected to examine 
the effect of the robot position on the estimation accuracy 

index 

coords 

dErr 

az Err 

Table 3:     The position and azimuth errors achieved at 13 different robot locations 

123456789 10 11 12 13 

20,20 10,20 20,10 10,10 5,5 20,0 10,0 20,-8.3 10, -10 20, -20 20,-40 20, -70 20,-100 

1.45 1.54 1.57 1.54 1.68 2.81 2.83 39.7 9.83 5.43 7.47 15.57 26.49 

1.51 1.-17 1.46 1.51 1.65 2.11 2.39 51.38 11.99 6.10 5.84 7.67 9.53 

10 
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2.6 Nonlinear Least Square Estimation - Fine Tuning 

The accuracy of the above estimation can be improved by considering an alternative objective 
function that directly compares the computed bearings to the measured bearings. For a given 
robot position and orientation, the bearing angle to the ith landmark is derived as 

cos0(XL,-XB) + smd(YL,-YB) ) 
/?,=/» = tan"1 

-sin^C^-X^ + cos^r,,-^) 
(10) 

where x = [0, XH, YB ]
7 and i = \K N. Note that this function is non-linear. 

In practice the measured bearing is contaminated with additive noise as 

/?,=/;(*)+«, (ii) 

With N measurement, we stack up all bearing measurements to form a JV x 1 
measurement vector 

p = f(x) + n (12) 

The problem objective is to find x that minimises the non-linear cost function 

Q(x) = [f3-f(x)fN-'[p-f(x)] (13) 

where 

N = E[(n - £[n])(n - £[n])r] is the measurement error covariance matrix. (14) 

Note that if the bearing noise, n, is Gaussian, then the above estimator becomes the Maximum 
Likelihood Estimator (MLE). In order to utilise the MLE, the estimate from the SVD/GED 
method is set as the initial estimate x0 for the MLE, and a new x is found via a gradient 

descent approach. The detailed formulation is given in Appendix B. Figure 8 shows further 
reduction of the estimation error using the MLE - the red curves are brought closer to the 
green curves. 

11 
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•nmutti anof Ittma. 

OEO method 
OEO "—(hod * MLE 
CRLB 

/• . 
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/ 
/ 
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• 

/ 

2 A                e B 1 

bearing en (d*g) 

Figure 8:   The estimation errors from GED method (blue), GED method followed by MLE (green), 
and CRLB(red) obtained using 4 measurements 

We repeated the test using 8 landmarks to see the extent of the improvement. In Figure 9, the 
red curves are now much closer to the green curves (CRLB) than in Figure 8. 

- 
OEO malhod 
OEO method * MLE 
CRLS 

/ / / / 
/ .-' /   - - 

,-'' 

2 4                  e a                i 

5 5 

3 

azimuth 41701 (d«fl) 

4 3 

/   • 

4 

3.5 
/         • 

3 

2 5 

2 

1.S 

/ 

1 •/••' 

0.9 
4                          6                          0                         1 

baarlng err (dag) baarlng an (dag) baarlng en (dag) 

Figure 9:    The estimation errors of GED method (blue), GED method followed by MLE (green), and 
CRLB(red) when 8 landmarks are used 

12 
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3. Extension to Two Measurement Association (TMA) 
Problem 

In practice there may be limitations in the number of landmarks that one can use. Several 
reasons may contribute to this and include the cost of placing more landmarks, increase in 
image processing burden, occlusion in cluttered environment, or distant landmarks outside 
the visible range. 

Having visual sensors, we have to deal with the possibility that only a small number of 
landmarks are visible by the robot at any given moment. However, as demonstrated in 
Section 2, localisation accuracy improves with the number of measurements. Therefore, if a 
vehicle can store more than one set of measurements at different locations and if these 
measurements can be combined in some way, then position estimation often becomes more 
accurate. This idea is explored in the next subsection. 

3.1 Geometry Involving Two Successive Robot Positions 

Figure 10 shows the vehicle's current position Bl and its previous position B2. We assume that 
the path between B2 and Bl is circular (including straight, equivalent to infinite radius). The 
vehicle can generate a curved path via wheel steering [Green, D. N., et. al., 1993] or 
differentially driving the wheels [Chong, K. S., and Kleeman, L., 1997] [Papadopoulos, E., and 
Misailidis, M, 2007]. 

What we want to estimate is {#,, XT, YT} at Bl (refer to (2) for definition). As in Section 2.2, we 

use the measurements taken at Bl to form the equation in (4). The next step is to correspond 
the measurements obtained from B2 (ie., /?2,) to those collected at Bl. To do so we introduce 

three additional parameters, dl2, A& and a (see Figure 10 and Figure 11) where (dl2,a) is 

the polar coordinate of B2 with respect to Bl, and A0 reflects the curvature of the path. 
Mathematical derivations of these terms are given in Section 3.2. 

13 
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LANDMARK 
3 

Y   • LANDMARK 
1 

REF                       L1=(XL,,YL1) 

LANDMARK 
2 

L2=(XL2, YL2) 
• 

L3=(XL3, YL3) 

i X.       \Li2 

••"'' 

L2i  / 
/          L22/ 

\Ln         \ / 

/ J3l2 

*11    \ i^^ 

BODY  /^Xs21 
dl^---T'"""^0 

x*\       r1 

=
(XBI, YB1) 

B2 = (XB2, YB2) 

ai2=Arc length from B2 to B1 

 *- 

Figure 10: Illustration of a mobile robot moving from B2 to Bl in 1 second interval. Rotation of 

Ad ~ 8l -02 is the result of taking a circular path. 

3.2 Vehicle Odometry 

We use Figure 11 to illustrate the basic geometry leading to the definition and derivation of 
the three terms dn,A0 and a . We approximate the path between two successive positions as 
circular. This also includes straight paths, which are circular with infinite radius. 

14 
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Figure 11: Definition of geometric terms between two successive vehicle positions - dl2, A0 and a 

The odometry terms are defined as below. 
• an -arc length between Bl and B2 (circular arc), 

• dX2- linear distance between Bl and B2, 

• a - look angle to B2, and 
• Ad = 6^ - 62 - rotation increment. 

These terms can be deduced from either wheel steering angle (for steered vehicle) or wheel 
speeds (for differentially driven vehicle). 

3.2.1  Wheel Steered Vehicle 

Knowing the steering angle (ie., the control input), the turn radius R(in Figure 11) can be 

computed using R = where L and y are the wheel base and steering angle respectively 
tan/ 

[Green, D. N., et. al., 1993]. Having computed R, the values for dn,A6 and a can be obtained 

as below. 
a„ 

A0 = 0]-01 =-*-, 
R 

dl2 = Rj2(\-cos(A0)) and 

A0 
a 

(15) 

(16) 

(17) 

15 
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3.2.2 Differentially Driven Vehicle 

For a differentially driven vehicle, the control input to the vehicle is u = [VR,VL]
7, where 

VR and VL are the linear speeds of the right and left wheels. Assuming that VR and VL are 
constant within each time step, the dynamic equation of motion can be expressed as below 
[Chong, K. S., and Kleeman, L., 1997]. 

"*fll XB2 di2cos(&2 -a) 

rm = YB2 + d]2 sin(#2 -a) 

*x e2 Ad 

(18) 

where 

V -V 
Ad = — -, where L is wheelbase, 

L 
(v+v\ 

d.7 =   -* L At and I     2     J 
A0 

a = —. 
2 

3.3 Problem Formulation 

As in Section 2.2, for the current position Bl, we have 

,411, .412, sin/?,, -cos/?,, cos#, 

^112 ^122 sin/?,2 -cos/?,2 sin#, 

M M          M            M           XT 

A\\N A\2N sin/?1JV -cos/?1AJ      YT 

= <>**, 

(19) 

(20) 

(21) 

(22) 

where 
AUl=sm/3uXu-cosJ3llYLI 

A\2, = sin/3UYU+cos fiuXu 

(23) 

(24) 

Now consider the landmark position seen from the location B2. 

RB2uBUi      R 1-nB2»flli      nB2naiR LB2 = 
L2/cos/?2, 

L2,sin/?2, 
(25) 
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[,421,    A22,    sin ft,c- cos J32ls   - sin ft2ls -cos/32lc = mi 

After some algebraic manipulations, we obtain 

"cosC^) 
sin(6>) 

Xr 

where 
All, =[sm/32l(cXLI -sYLI)+cosPv{-sXu -cYu)] 

A22, = [sin ft, (sXLl + c7t,) + cos ft, (<*,, -sYu)] 

w, = -sinft,c</12ca -sinft,s</,2sa + cos p2,s-duca - cos P2,c-dnsa 

absence of measurement errors, stacking up for all the landmarks gives 

-sinft,.s-cos/?2lc 

DSTO-TR-2260 

In the 

,421,     A22x 

A2\2 

M 

,422, 

M 

sinft^c-cosft,.! 

sin/?22c-cos/?225     -sinft,s-cosft,c 

M M M M 

A2\N    A22N    sm p2Nc-cos P2Ns   -sin P2Ns -cos P2Nc 

cos(6>,) 

sin(0,) 

XT 

YT 

M 

mN 

(26) 

(27) 

(28) 

(29) 

(30) 

The equations (22) and (30) can be combined in to Ax = b where A is 2N x 4, x is 4x1 and 
b is 2N x 1 (see below). 

A\\t      A12, 

AM,     A\2, 

M 

AllN 

A2\x 

A2\2 

M 

All* 

M 

A\2N 

A22x 

A222 

M 

^22 „ 

sin A i 
sin ft2 

M 

sin ft N 

sin P2lc - cosP2]s 

sin P22c - cos P22s 

M 

sinft^c-cosft^s 

- cos /?,, 

-cos/?l2 

M 

-COS ft „ 

sinft,5-cosft,c 

" s-cos P22c 

M 

cos P2Nc 

• sin ft2 

-shifts 

~ 0 

0 

cos#. M 

sin#, 0 

Xr w, 

[    *T     \ w2 

M 

/%_ 

(31) 

Note that Ad is embedded in A and b, and c?|2and a are embedded in b, effectively 
replacing B2 parameters. 
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3.4 Optimal Solution 

In presence of measurement errors, where Ax = b, our objective becomes 

Minimise   x7Px + 2prx + w 

subject to   x7 Qx -1 = 0 

where P = A A (symmetric and positive definite), 

p7 =-b7A, 

w = b7b and 

Q = 

1 0 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 

(32) 

(33) 

(34) 

(35) 

(36) 

To solve this problem, we first transform (32) into a simpler form where P disappears from 
the quadratic term. 

Since P and Q are symmetric, and P is positive definite, there exists a transformation matrix 

S that will transform P to I4y4 and Qto a diagonal matrix, (ie., SPS =I4x4and 

SQS7 = Q^, (diagonal)). The proof is included in Appendix C. 

S and QD are computed as follows: 

1. S, = P~2 = VpVV,7.   where (Vp,£p) = eig(P) 

2. LetY = S,QS7 

3. S2 = VY (eigenvectors of Y) where (VY, 2 Y ) = eig(Y) 

4. S = S2S, 

5    Qfl=SQS7=LY 

Note QD and Q are congruent matrices, hence have the same inertia (ie., same number of 

positive, negative and zero eigenvalues). They both have 2 positive and 2 zero eigenvalues. 

QD = 

Mt 0     0    0 

0 /i2 0 0 

0 0 0 0 

0      0     0    0 

where fix > JU2 (37) 
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Then the objective function and constraint can be re-expressed as below. 

xrPx + 2p7x + w 

= y7SPS7y + 2prS7y + w, where x7'=y7S and x = S7y 

= y7 y + 2gAy + «- where pTST = g7 

x7Qx-l 

= yrSQS7y-l 

= yrQ„y-i = o 
Now define Lagrangian of the reduced problem as 

L(y,V=yTy+2gTy+u-A.(yTQDy-i) 

Setting the partial derivative terms to zero, 

^ = 2(y + g - AQ0y) = 2((I - /LQW )y + g) = 0 
5y 

§ = yrQoy-i = 0 
ok 

(38) 

(39) 

(40) 

(41) 

(42) 

From (41), 

y = -(I-/lQD)-,g = -D,g 
where 

1 
0 0 0 

1-A//, 

D,=(I-AQc)-' = 0 

0 

1 
0 

1 

0 

0 0 

0 0 0 1 

= K 

(43) 

(44) 

Substituting y = -D^g into (42), 

K(A) = — = grD7'QwD/lg-l = 0 which can be simplified to 
dA. 

K(A) = + ^L-\=0 
{\-AMiy {\~AM2y 

(45) 
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This constraint function K(X) can be shown to be monotonously increasing for A within the 

1 
interval A = -00. 

/'l 

, by noting > 0 V X e A. Proof that the global minimum is 
dk 

within A is shown in Appendix D. 

The above finding combined with    lim K(A) = -\ and    lim   K(X) = +oo suggests that 
/!-*(-») &' 

K(X) has exactly one zero crossing within A. 

We can use matlab function/zero to look for the zero crossing (ie„ X) in A. 

K=(S{L)    C1A2/(Ml*(1-L*M1)'2)+C2*2/(M2*(1-L*M2)*2)+(s-Cl"2/Ml-C2*2/M2); 
L_op=fzero(K,    1/M1*0.999); 

Having found the optimal Lagrange multiplier X, the optimal state can be computed as 
follows. 

y'=-{\-XQDrg 
-1 

1 - Xju, 

0 

0 0      0 

-1 
0      0 

\-Xfi2 

0 0-10 

0 0 0-1 

~g\ 
Si \-Xft 
gl -gl 

gl \-Xfi2 

|_S4_ -g3 

-g, 

(44) 

=> x  = 

cos^,' 

sin#,* 

Si.  -r 

Y' ir 

= S7y (45) 

Optimal azimuths and positions are given below 

0' =tan~'(Y(2)/jc'(l)) (matlab function "atan2(x(2), x(l))") 

e: = 0,*-A0 

(46) 

B; = -+?r .A T- 

}•* 
(47) 
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B;= XB2 

Y* . 'B2 

= BI + 
dl2cos[x + 0' +a) 

dl2sin\7r + 0* +a) 

DSTO-TR-2260 

(48) 

3.5 Experimental Result 

3.5.1 Default Scenario 

The fallowings are the default settings used in the simulation. 

• landmark positions: L={(0, 0), (40, 0), (0, 40), (40, 40)} 
• speed=5m/s, wheel steering angle=5°, wheel base=0.5m, At =lsec. 
• B2=(4,10)m (start), Bl= (7.7,13.1)m (end); 
• 02 =15° (start),   <9, =65.1273° (end), 

• dl2 = 4.83m, A6> = 50.13°,a = 25.06° 

The relative geometry terms have Gaussian noises as below: 
• a(dl2) =0.25m (5% error), 

• cr(A<9) =1° and 

• cr(«)=l°. 

Default measurement noise is 

• a{Pi) = 3° for each bearing. 

3.5.2 Comparison with GED method 

The measurement noise is varied from 0.5° to 10°. In Figure 12, position error (ie., 

y]x _ err2 + y _ err1 ) and azimuth errors from the GED (blue) and TMA (green) methods are 

compared. 
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azimuth error (dag) 

-/- 

K 

, 
GED mathod 

TMAmathod / 

1       /          J-                       ,                          1 
I    /           -' )                          i                          i 

/'.-i                   i                   i 

0 2 6                   8                   10 
baaring arr (dag) baaring arr (dag) 

Figure 12: Position and azimuth error curves by GED (blue) and TMA (red). 

It was previously shown in Figure 8 that the GED (with MLE) error curves are already close to 
the CRLB, indicating not much room for improvement. To go beyond the bounds, we 
somehow need to generate more measurements from the given number of landmarks, which 
is the underlying idea of the TMA approach. Having implemented this approach, the error 
curves for the TMA method (red) are significantly lower than the blue curves, and the 
estimation improvement of 25% and 35% are achieved for the position and azimuth 
respectively. 

With the default setting of 3° bearing error, the position and azimuth errors are 1.2m (lcr) and 

1° (lcr) respectively, and they increase linearly, reaching 4.5m and 3.7° at 10° bearing error. 

The difference between the GED and TMA errors are also presented in Figure 13 for a closer 
look. 

position distanca arror gap azimuth arror gap (dag) 

1 i             > 

i - — y-f" 

 L  ...A  

V 
 -A  

/ 

J 
—  r  

GED an-TMA arr [ 

/ 
! 

r 
/ 

....; /-'.- 

... y 
  ,__._, 

/1 

/ ,-/._. ....: — — 

/ 
0 i a i          u 

baaring arr (dag) 

Figure 13: Difference of position and azimuth errors between the GED and TMA methods 
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3.5.3 Sensitivity to Odometry Errors 

The TMA method requires known relative geometry between two successive positions in 
terms of di2,A6 and a . They can be provided by either odometry or inertial navigation 

system (INS). As for odometry, the error sources include mechanical imperfections, sensor 
errors, and wheel skidding or slippage. 

For indoor applications, after calibration, positional accuracy can be as low as 1-2% of distance 
travelled [Papadopoulos, E., and Misailidis, M, 2007]. Setting the values for dl2 and a errors 

should reflect such positional accuracy. According to [Borenstein, ],, et al, 1996], A 9 error can 
be as low as 1-2° on smooth surface but can grow up to 8° with 10 bumps. This error growth 
can be prevented if a gyroscope is incorporated on the vehicle. We want to explore the 
sensitivity of the system to the errors associated with these parameters. We vary one 
parameter at a time, while keeping the other two at default values as in Subsection 3.5.1. 

First, we vary the dl2 error from 1% to 50% of the distance travelled (ie., 5m). Therefore 2.5m 

(\a) would be the largest dX2 error here. After 3000 Monte-Carlo simulations, the x/y position 

and azimuth errors are plotted against the dn error in Figure 14. The red curves are the 

smallest possible estimation errors with 4 bearing measurements. 

y position arror azimuth arror (dag) 

TMA 

4 maaauramanta 

10 20 30 40 
d12 arror parcantaga 

10 20 30 40 SO 
d12 arror parcantaga 

10 20 30 40 50 
d12 arror parcantaga 

Figure 14: Estimation errors versus dn error - red curves are the smallest possible estimation errors 

with 4 bearing measurements 

It is shown that position errors remain steady for du error below 20% and increases when this 

error exceeds 20%. The increase in the displacement errors due to increase in the dn error 

from 5% to 50% is about 0.63m (1(7). The azimuth accuracy does not seem to be affected by 

of, 2 error. 

Next, we vary Ad error from 1° to 30° while keeping the rest at default. The results shown in 
Figure 15 indicate that the performance is indeed sensitive to Ad error. The blue curves grow 
rapidly from the start. The azimuth error exceeds the red curve at 2°, and the position error (x 
and y combined) exceeds the red bound at 12° bearing error (not shown in the figure). To keep 
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this error source under control in outdoor applications, external aiding such as gyroscope may 
be necessary. 

x position erro 

/ 
,' 

S 

10 15 20 25 30 
dlhota error (dag) 

azimuth error (dag) 

TMA 

4 measurements 

/ / 
/ / 

/ 
/ 

10 15 20 25 30 
dthola srror (dag) 

10 15 20 25 30 
rftheta error (dag) 

Figure 15: Estimation errors versus A# error (la)- red curves are the smallest possible estimation 

errors with 4 bearing measurements 

Lastly, we vary a error from 1° to 30° while keeping the other two at default. According to 
Figure 16, a error contributes to position estimation errors but at a slower pace than A0 
error does. The azimuth error seems unaffected by a error. It appears that a error up to 10° 
may be well tolerated. 

10 15 20 25 30 
alpha error (dag) 

azimuth error (dag) 

TMA 

4 maaauramanta 

10 15 20 25 30 
alpha error (dag) 

Figure 16: Estimation errors versus a error(\cr)- red curves are the smallest possible estimation 

errors with 4 bearing measurements 

From the above observations, it is clear that incremental rotation Ad is the most critical 
contributor to the localisation accuracy. It appears that A9 error should be maintained below 
2°. This can be achieved as numerous low cost gyroscopes in the market meet this 
requirement. 
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3.5.4 Sensitivity to Vehicle Speed 

In this subsection, we examine the effect of distance travelled within one time step (ie., speed) 
on the estimation accuracy. The vehicle starts from (4,10) with zero azimuth. It moves straight 
by a distance of dn, which varies from 0.1m to 30m. Just for this test, we set the di2,A0 and 

a errors to zero, and bearing error to 3° (1<T) . 

poirtion error (m) azimuth error (oeg) 

___4_____   _| ___4.__-__- 
.                 I I                                 i 

_ J _„__________ 

----t -I"    -----T-- " 

___-(_____ _|_   ____-4-__-___ 

______J_____   _l_   _   _    _   _    _    L    - 

 _ r   _ 
    A 1  

____________  _,_  ____________ 

 ---.------I--- f ____ 

10 
dtt 

Figure 17: Estimation errors versus distance travelled within the time step 

After 3000 Monte-Carlo simulations, the position and azimuth errors are plotted versus the 
distance travelled (ie., du) in Figure 17. The estimation errors do not seem to vary much with 

du. The position error is larger for dl2 < 3 m, and then remains small until dn exceeds 16m. 

The azimuth error increases as dl2 increases but the change is not significant. Therefore, we 

conclude that the speed variation during the mission does not affect the navigation accuracy. 
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4. Conclusions 

We proposed two algorithms for estimating the position and orientation of a mobile robot 
(UGV) given noisy bearing measurements. The key findings of the study are listed below. 

• The GED method finds the global minimum analytically and the estimation accuracy 
is close to the CRLB for bearing errors up to about 5°. 

• If the bearing error becomes large (e.g., >5°), few iterations of MLE optimisation can be 
added to bring the estimates closer to the correct solution. This works more effectively 
when N is large. 

• The performance is usually more accurate when the vehicle is within the area 
delimited by the landmarks. 

• The TMA method makes use of additional bearing measurements collected at the 
previous unknown location, and finds the current and previous positions (and 
azimuths) simultaneously. 

• The TMA method results in a significant improvement (« 3 0%) by effectively doubling 

the number of the measurements. 

• The TMA method requires three additional terms, dn,ts.0 and a, and shows greatest 

sensitivity to A0 error. For outdoor applications, incorporation of a gyroscope with a 
bias below l°/s is recommended. 

• The vehicle speed does not significantly affect the performance. 

These methods, especially TMA, can be combined with inertial navigation system (INS) 
where the INS can provide accurate estimates of dn,h0 and a, and the TMA can 

prevent the INS solution from drifting via Kalman filtering. 

The authors are currently investigating the 3D localisation problem, where the vehicle 
(either UAV or UGV) has a moderate tilt and takes measurements in azimuth and 
elevation. 
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Appendix A: Detailed Derivation of TMA Method 

Rotation Matrices: 

R? = 

R" = 

RB\   _ 
B2   ~ 

cos#. sin 6>, C,        5, 
] 

- sin 6>, cos#. -5,      C,_ 

cosd2 sin#. C2         52 

- sin 92 cos#2 — 52    c2 

REF to Robot Position 1 (at current time) 

REF to Robot Position 2 (at previous time) 

cos(A6>)    sin(A6>) 

-sin(A6>)   cos(A6>) 

c     s 

— s    c 
Robot Position 2 to Robot Positionl 

For Robot Position 1 (Current Time): Consider i,h landmark position L; wrt Bl frame 

Lf = 
Lu cos 

Lu sin 

where T"1 ~xT~ 
Jr. 

= R*'(LI-B,) = R;,LI-RJ|'B1 = 
cos#,     sin#, TA,, 

- sin 0,    cos 0, J[_ Yu 
+ T: 

= -K% 

Diving the top row by bottom row, 

cos /?,,      cos 6X X u + sin #, YLi + Xr 

sin /?,,     - sin #, Xu + cos #, /,, + YT 

sin/?,, (cos 6*,^, + sin#,y/, + Xr)-cos/?,,(-sin #, A,, + cos#,}/
/, + y?) = 0 

cos#, 

[sin/?,,*",., -cos/?,,/,.,,   sinphYLl+cosJ3UXU,   sin/?,,,   -cos/?,,] 

Let 
,411, = sin/?„*,,-cos/?„/„ 

A\2, =s\npuYu + COS fiuXLI 

For « landmarks, 

sin#. 
= 0 

(Al) 

(A2) 
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M 

A\2, 

A\22 

M 

sin/?,, 

sin/?,2 

M 

A\\N    A\2N    sin/?IA, 

cos/?,," COS#, 

cos /?12 sin#, 

M Xr 

cos/?,„_ L rr 

= o„ (A3) 

For Robot Position 2 (previous time step): Consider i* landmark position Lj wrt B2 frame 

L" = 
L2,cos/?2, 

L2ismp2, 
-KBIK/( lL, -B2/-KSlK/( L/ -KB1K« B2 

= R"R*'L, -R**R*'(B, +Rg,[B2-B,]   j 

(A4) 

,/)2T,BI B, +Rgl 
-<i,2cosar 

di2s'ma 

>B2T*B\ RBZnt)\j        w^n xR -R 
-c/,2cosa 

<^,2sinor 

7r 
RB2 

HI 

-J,2 cos or 

-d,2sin« 
, where 

Xr 

YT 

R*B, 

c   -s 

s     c 

cos#,      sin#, TX,, 

- sin 6X    cos 6X 

+ 
C     -5 

5       C 

xT - 
c   - s 

s     c 

-ducosa 

^,2sinar 

c-cos#, + ssin#,    c-sin#,-s-cos#, \XU 

s• cos#, -c• sin#,    5 • sin#, + c• cos^, I Yu 
+ 

CJi. j — Slj- 

sXr + cYT 

-c-dn cosar -s-d[2 sin a 

— s-dn cos a + c • dl2 sin a 

Using shorthand notation for sine and cosine functions, 

~X CA -r ~~ S X y 

SA. j- T C / T- -s-daca +c-dnsa 

(A5) 

Dividing the first row by second row, 

L2jcos/?2/ _ (c• c, + 5• s{)XLi +(c-si-s-cl)YLi + cXT -sYT +c-dnca +s-dl2sa 

L2l sinP2l     (s • c, -c • •$,)Xi( + (5 • 5, +c-c})YU + sXT + cYT + s-dnca-c-dusa 
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s>n/U(< f-c{ +s-s{)Xu + (c• s, -s• c,)YLl + cXT -sYr+c-dnca +s-dnsa] 

+ sXT + cYT + s • d]2ca -c • dnsa J = 0 - cos P2l [(s • c, -c-s^)Xu +(5-5, +c-cx)Yu +SXT +CYT +s-d]2ca -c-d _ 

sin Plt {c-cx + s • J, )Xu + sin /?2, {c-sl - s • c, ^ - cos /?2, (s • c, - c • 5, )A'i( - cos /?2, (5-5, + c • c, )F,, 

+ sin/?2;cXr -cos/32lsXT -s'mfl2lsYr -cosp2lcYT 

+ sin P2ic-dl2ca + sin P2ls-d]2sa - cos p2ls-di2ca + cos P2lc-d[2sa = 0 

[sinP2,(cXLl-sYu) +cosp2,(sXL, -cYu)h +[smfi2i(sXu +cYL,) +cosp2,(cXu -sYu)h 

+ [sin P2ic - cos P2,s]xr + [- sin P2ls - cos /?2,c]f7 

-[-sin^c-^^^-sin^^-^j^+cos^i-^.^-cos^c-^^^l^O 
Let 
A2\t =[s\nP2l{cXu -sYu) +cosP2,(-sXu -cYL,)] 

A22, = [sin p2l (sXu + cYu) + cos 02l (cXLl - sYLl)] 

m, = -sin p2,c • dS2ca - sin P2ls • dl2sa + cos fl2ls • dl2ca - cos P2,c • d, •a\2Sa 

Then [^21,    /122,    sin fl2lc - cos fl2ls   - sin fl2ls-cos P2,c 

cos(<9,) 
sin(6>) 

XT 

Yr 

(A6) 

Stacking up rows for all the landmarks 

A2\t A22x sin P2Sc-cos P2\S - sin /?2,s -cos P2]c 

A2\2 A222 sin P22c - cos P22s - sin P22s - cos P22c 

M M                    M M 

A2\N A22N sin P2Nc-cos P2Ns -sin P2Ns -cos P2Nc 

cos(#,) m, 

sin(c?,) m2 

XT M 

[    Yr jnN_ 

(AT) 

The highlighted equations for Bl and B2 can be combined in to 
Ax = b where A is 2JV X 4, x is 4x1 and b is 2N x 1. 

AW,      A\2, 

AW,     A\2, 

M 

^llv 

M 

A2\ „ 

M 

^12w 

^21,     ,422, 

A2\,     A22, 

M 

^22 „ 

sin/?,, 

sin /?12 

M 

sin/?,„ 

sin/?2,c-cos/?2,s 

sin P22c - cos P22s 

M 

sin p2Nc-cos p2Ns 

- cos /?,, 

-cos/?,2 

M 

-cosP]N 

Pns-cos P2Xc 
0 ,s- cos P22c 

M 

-sin/?2iVs-cos/?2Jvc 

-sin 

- sin P22 

' 0 " 

0 

["cos #, M 

sin#, 

Xr 
= 

0 

L r
?- . m2 

M 

_m„_ 

(A8) 
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Appendix B:  Maximum Likelihood Estimator 

As mentioned in Section 2.6, f(x) is a nonlinear vector function. To determine a simple 
estimator, f(x) can be linearised as below 

f(x)*f(x0) + G-(x-x0) (Bl) 

where G is N x 3 matrix of derivatives evaluated at xn 

G = 

df 
5x(l) 

df df 

M 
dfN 

dx(\) 

dx(2) 

M 
dfN 

dx(2) 

<5x(3) 

M 

5x(3) 

th The i   bearing angle is expressed as 

/,(*) = tan " where 

g, = cos 8{XU-XB) + sme(Yll-Yli) 

gy = -sin0(*A, -XB) + cos0(Yu -YB). 

Then the i   row elements of G are 

df 
dx(l) 

df 

DO 
~(gl+g2

y)=_] 

dx(2) 

df 

df, 

dx(3) 

dXt 

df, 
dYu 

gl+g2
y 

sinftg^+g^cosfl, 

gl+g] 

- cos 0,gx+gy sin 0, 

gl+gl 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

Inserting   (Bl)    into   the   cost   function Q(x) = [p~f(x)J N ' p-f(x)J,    (where    N is 
N x N measurement covariance matrix), 

Q(x) = [p-f(x0)-G(x-x0)]
7N-'[p-f(x0)-G(x-x0)] (B7) 

33 



DSTO-TR-2260 

To minimise Q(x), we want = 03x|, 
dx 

-^ = 2G7'N-'Gx-2G7'N-1(P-f(x0) + Gx0) = 03)<1 (B8) 
dx 

Rearranging (B8) gives the iterative estimation equation. 

x = x0+(GrN-'G)"1G7'N-|(p-f(x0) (B9) 

And if we assume E[x] = x (unbiased), then it can be shown that the covariance matrix of x 
can be expressed as 

P = £[(x-£[x])(x-£[x])7 ] = (GrN-'G)"'. (BIO) 

The square-root of diagonals of P  become the Cramer Rao Lower Bounds for the estimate 

accuracy of x = [6, XB, YB ]
T . 
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Appendix C: Proof of Simultaneous Diagonalisation 

Note P and Qare real symmetric, and Pis positive definite. We define the matrices of 

eigenvectors and eigenvalues of Pas [Vp,£p] = eig(P) where eig is a matlab function that 

produces a diagonal matrix £p of eigenvalues and a full matrix Vp whose columns are the 

corresponding eigenvectors so that 

V;PVP = 2P. (Cl) 

We define a transformation matrix that will diagonalise P and Q simultaneously as product 
of two matrices. 

S = S,S,. (C2) 

We set 

S,=VPV
V

P- (C3) 
_i 

Note that Lp
2 exists only if P is positive definite (ie., every diagonal elements of £p are positive). 

We set S2 to be the transpose of the eigenvector matrix of Y = S,QS[ (ie, S2 = Vv where 

rVY,E¥] = efc(Y)). 

Then the following relationship will hold 

S2YS7
2=LY. (C4) 

Note that eigenvector matrices are always orthogonal therefore 

VPV; = VP
rVP = S2S

7
2 = S7S2 = I4x4 (C5) 

Firstly, we need to prove that SPS7 = I4x4 

SPS7' =S2S,PS7'S2 

= S2(VPEp2Vpr)(VPLPVp
rXVPVVp

r)S£ 

_1        _i 
= S2LP

2LPLP
2S2      (dueto(C5)) 

= S2S7' 

= I4x4 (dueto(C5)) 

Secondly, we need to prove SQS7 = QD where QD is diagonal. 

SQS7' = S2S,QS7'S7' 

-S2YS7' 

= IV    (diagonal matrix of eigenvalues) 
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Appendix D: Lagrange Multiplier Boundary 

We need to show that the optimal Lagrange multiplier must be upper bounded by —. From 

Section 3.4, the Langrangian of the problem is 

L(y, X) = y7 y + 2g7 y + u - A(yrQDy -1) 

The first order optimality condition was 

dL 

dy 
= 2(y + g - A*QDy) = 2((I - A'QD)y + g) = 0 . 

The second order optimality condition is 

d2L 
- = (I-A'Q/J)>0 

dyz 

I-AQ, 

1-A>, 0 0    0 

0       I-A>,   0   0 

0 0 10 

0 0 0    1 

> 04)<4 where //, > //2 

(Dl) 

(D2) 

(D3) 

(D4) 

From (D4), X must satisfy both X ^l/^and X <\//u2. Since //, > /u2, by taking the 
intersection of the two boundary conditions, we arrive at this condition. 

X <l//i, (D5) 
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